Lecture 17 - March 21

Reactive System: Bridge Controller

Announcements

- Lab3 released
- Review Q\&A Session 7pm on Wednesday, March 22
Zoan

Lecture

Reactive System: Bridge Controller

First Refinement: Inv. Establishment

PO of Invariant Establishment in Refinement

init begin

Components

$K(c)$: effect of abstract init
$L(c)$: effect of concrete init

Rule of Invariant Establishment Exercise:

abs. rift. con. rant. steps.
Generate Sequent from the INV rule.

Discharging PO of Invariant Establishment in Refinement

$$
\begin{aligned}
& d \in \mathbb{N} \\
& d>0 \\
& \vdash \\
& 0+0+0=0
\end{aligned}
$$

init/inv1_4/INV

$$
\begin{aligned}
& d \in \mathbb{N} \\
& d>0 \\
& \vdash \\
& 0=0 \vee 0=0
\end{aligned}
$$

init/inv1_5/INV

Events

Lecture

Reactive System: Bridge Controller
First Refinement: Invariant Preservation New Events

Bridge Controller: Guarded Actions of "new" Events in 1st Refinement
axioms:
constants: d
axm0_1: $d \in \mathbb{N}$ axm0_2: $d>0$
invariants:
inv1_1: $a \in \mathbb{N}$
variables: a, b, c
inv1_2: $b \in \mathbb{N}$

IL_in: A car enters island (getting off the bridge).

not necessary i: $\bar{a} N 1-5$
Q. Guard: $\mid a+b<d$ not necessary: (1) ML_out already checks it IL_out: A car exits island (2) $a^{\prime}+b^{\prime}$ (getting on the bridge). $=(a-1)+(b+1)$
 $=a+b$
IL_out $b>0$ inv1_3: $c \in \mathbb{N}$ inv1_4: $a+b+c=n$ inv1-5: $a=0 \vee c=0$

$$
\begin{aligned}
a & =0 \quad a^{\prime}+b^{\prime}+c^{\prime} \\
\rightarrow b: & =b-1=a+(b-1) \\
\rightarrow c & =c+1+(c+1) \\
& =a+b+c
\end{aligned}
$$

Before-After Predicates of Event Actions: 1st Refinement

Trace: I car travelling $\left\langle\right.$ init, ML_act, IL_ir, IL_out, $M L_{-\pi}$ 〉 \rangle

Exercise 2 cars travelling

Visualizing_ Invariant Preservation in Refinement
Each new state transition (from w to w^{\prime}) should be simulated by an abstract dummy state transition (from v to v^{\prime})

PO/VC Rule of Invariant Preservation: Sequents

Abstract mo

Q. How many PO/VC rules for model ml?

IL_in_INVI_4/INV
$d \in \mathbb{N}$
$d>0$
$n \in \mathbb{N}$
$n \leq d$
$a \in \mathcal{N}$ $\underset{c}{b \in \mathbb{N}} \mathbf{C \in N}$
$1(6-1)+(b+1)+c=n$
$a+b+c=n$
$a=0 \vee c=0$
$a>0$?
$? a^{\prime}+b^{\prime}+c^{\prime}=\Omega$
$(a-1)+(b+1)+c=$
IL_in/INV1_5/INV
(Exercise : formulate\& skip went prove).

Discharging POs of m1: Invariant Preservation in Refinement
IL_in/inv1_4/INV

$$
\begin{aligned}
& d \in \mathbb{N} \\
& d>0 \\
& n \in \mathbb{N} \\
& n \leq d \\
& a \in \mathbb{N} \\
& b \in \mathbb{N} \\
& c \in \mathbb{N} \\
& a+b+c=n \\
& a=0 \vee c=0 \\
& a>0 \\
& \vdash \\
& (a-1)+(b+1)+c=n \\
& \hline
\end{aligned}
$$

Discharging POs of m1: Invariant Preservation in Refinement
ML_in/inv 1_5/INV

FALSE_L
$H 1 \vdash G$MON
$H \vdash Q$
$\perp \vdash P$
$H 1, H 2 \vdash G$
$H(F), E=F \vdash P(F)$
$H(E), E=F \vdash P(E)$
EQ_LR
$H, P \vdash R$
$H, Q \vdash R$
$d>0$
HYP
EQ_LR
$H, P \vee Q \vdash R$
$n \in \mathbb{N}$
$n \leq d$
$a \in \mathbb{N}$
$b \in \mathbb{N}$
$c \in \mathbb{N}$
$a+b+c=n$
$a=0 \vee c=0$
$a>0$
\vdash

$$
(a-1)=0 \vee c=0
$$

Lecture

Reactive System: Bridge Controller

First Refinement: Convergence New Events

Livelock Caused by New Events Diverging

